Zur Kenntnis von Sr₅Au₂O₈

J. Weinreich und Hk. Müller-Buschbaum Institut für Anorganische Chemie der Christian-Albrechts-Universität, Olshausenstr. 40–60. W-2300 Kiel (FRG)

(Eingegangen am 17. Januar 1992)

Abstract

The hitherto unknown compound $Sr_5Au_2O_8$ was prepared by the reaction of an Sr/Au alloy with $Sr(OH)_2$ in closed silver tubes. The crystal structure was determined by means of an X-ray single-crystal investigation. $Sr_5Au_2O_8$ forms orthorhombic crystals: space group D_2^7 -F222; a=11.7449 Å; b=11.7407 Å; c=6.5155 Å; Z=4. The O^{2-} ions are coordinated in a quadratic planar arrangement around Au^{3+} and as a distorted cube around Sr^{2+} . The crystal structure is described and the crystal chemistry is discussed in comparison with that of other oxo-aurates.

Zusammenfassung

Die bisher unbekannte Verbindung Sr₅Au₂O₈ wurde durch Reaktion von Sr/Au-Legierungen mit Sr(OH)₂ in geschlossenen Silberrohren dargestellt. Die Kristallstruktur wurde röntgenographisch an Einkristallen aufgeklärt. Sr₅Au₂O₈ kristallisiert orthorhombisch, Raumgruppe D_2^7 -F222 mit a = 11,7449 Å; b = 11,7407 Å; c = 6,5155 Å; Z = 4. Au³⁺ ist quadratisch planar, Sr²⁺ deformiert würfelförmig von O²⁻ koordiniert. Die Kristallstruktur wird beschrieben und die Kristallchemie mit der anderer Oxoaurate diskutiert.

1. Einleitung

Die Kristallchemie der Oxoaurate(III) wurde bisher nur an wenigen Beispielen studiert. Aus der Reihe der Alkalimetalle sind Li_3AuO_3 , Li_5AuO_4 , $KAuO_2$ und $RbAuO_2$ [1] bekannt. Kürzlich erschien eine Untersuchungen an (Nd, Pr)AuO₅ [2] sowie ein Beitrag über das erste Erdalkalimetall-Oxoaurat(III) Ba₉Au₂O₁₂ [3]. Alle aufgeführten Stoffe zeigen Au³⁺ in quadratischer Koordination von Sauerstoff, sie unterscheiden sich jedoch in der Verknüpfung dieser Polygone. In KAuO₂, RbAuO₂ und Li₅AuO₄ liegen eindimensionale Ketten kantenverknüpfter AuO₄-Quadrate vor. In Li₃AuO₃ treten isolierte über Kanten verknüpfte Doppelquadrate auf. (Nd, Pr)AuO₅ und Ba₉Au₂O₁₂ sind bisher die einzigen Verbindungen mit isolierten AuO₄-Quadraten. Es besteht ein Interesse, die Chemie der Oxoaurate(III) zu erweitern, mit dem Ziel eine den Oxocupraten analoge Systematik zu erstellen.

2. Darstellung von $Sr_5Au_2O_8$ mit röntgenographischer Untersuchung an Einkristallen

Aufgrund der extrem leichten Zersetzlichkeit von Goldoxiden, ist es zweckmäßig bei der Synthese von Erdalkalimetall-Oxoauraten direkt vom metallischem Gold oder dessen Legierungen auszugehen.

Entsprechend den Untersuchungen intermetallischer Phasen von Gold mit Strontium [4] wurde eine Phase Sr:Au = 1,2:1 durch Zusammenschmelzen von Sr und Au im Porzellantiegel unter Argon-Schutzgas hergestellt. Das

TABELLE 1

Kristallographische Daten* und Meßbedingungen für Sr5Au2O8

Gitterkonstanten (Å)	a = 11.7449(26)
	b = 11,7407(24)
	c = 6.5155(10)
Volumon (13)	000 / /
volumen (A ⁻)	
Ausloschungsbedingungen	$n\kappa\iota: n+\kappa, n+\iota, \kappa+\iota=2n$
	0kl: k, l=2n
	h0l: h, l=2n
	h00: h = 2n
	0k0: k=2n
	00l: l = 2n
Raumgruppe	$D_2^7 - F222$
Diffraktometer	4-Kreis, Philips PW 1100 modifiziert
	durch Stoe
Strahlung/Monochromator	Mo Ka, Feinfokus/Graphit
20-Bereich	5°<2 <i>θ</i> <70°
Schrittweite (Grad 2θ)	0,04
Meßmodus	Ω/2θ
Korrekturen	Polarisations- u. Lorentzfaktor,
	empirische Absorption (EMPIR [7])
Anzahl der Reflexe	$378 (F_0 > 3\sigma(F_0))$
Gütefaktor	R=0,069

*Standardabweichungen in Klammern.

TABELLE 2

Atomparameter^{*} für Sr₅Au₂O₈: in der Raumgruppe D_2^7 -F222 sind folgende Punktlagen besetzt

	Lage	x	y	z	B (Å ²)
Aul	(4a)	0,0	0,0	0,0	1,07(9)
Au2	(4b)	0,0	0,0	0,5	0,01(14)
Sr1	(4c)	0,25	0,25	0,25	0,89(10)
Sr2	(8i)	0,25	0,5268(4)	0,25	0,75(7)
Sr3	(8j)	0,0273(4)	0,25	0,25	0,73(7)
01	(16k)	0,127(5)	0,124(6)	0,037(9)	1,71(95)
02	(16k)	0,118(3)	0,877(3)	0,501(7)	0,01(39)

*Standardabweichungen in Klammern.

TABELLE 3 Interatomare Abstände^a (Å) für Sr₅Au₂O₈

Au1–O2	2,002(35) (4×)
Au2–O1	2.098(65) (4×)
Sr1-01	$2,490(63) (4\times)$
Sr1-02	$2,694(39) (4\times)$
Sr2-O2	2,521(40) (2×); 2,851(39) (2×)
Sr2-O1	2.624(61) (2×); 2.674(64) (2×)
Sr3–02	2,456(40) (2×); 2,787(39) (2×)
Sr3–01	2,656(63) (2×); 2,720(63) (2×)

*Standardabweichungen in Klammern.

erstarrte, luftbeständige Präparat wurde fein zerrieben und mit Sr(OH)₂ innig vermengt. Die Reaktion erfolgt im geschlossenen Silberrohr. Während einer Reaktionszeit von fünf Tagen bei 650 °C kristallisierten aus einem inhomogenen Reaktionsprodukt hellgelbe, stäbchenförmige Kristalle, die mechanisch abgetrennt wurden. Mit energiedispersiver Röntgenspektrometrie (Elektronenmikroskop Leitz SR 50, EDX-System Link AN 10000) wurden die Einkristalle analytisch untersucht. Das ermittelte Verhältnis Sr:Au beträgt 2,5:1. Ausgesuchte Kristalle von Sr₅Au₂O₈ wurden mit Film- und Vierkreisdiffraktometermethoden untersucht. In Tabelle 1 sind die Meßbedingungen und kristallographischen Daten aufgeführt. Mit dem Programm SHELXS–86 [5] wurden die Metallatomlagen, mit Differenzfouriersynthesen die Positionen der O²⁻-Ionen bestimmt. Die Verfeinerung der Atomparameter erfolgte mit dem Programm SHELX–76 [6]. Die abschließenden Werte sind in Tabelle 2 zusammengestellt. Mit diesen Werten berechnen sich die in Tabelle 3 aufgeführten wichtigsten Metall–Sauerstoff-Abstände.

3. Beschreibung der Kristallstruktur von Sr₅Au₂O₈

Die Röntgenstrukturanalyse von $Sr_5Au_2O_8$ zeigt, daß dieses Oxoaurat(III) nicht mit Ba₉Au₂O₁₂ isotyp ist. Es repräsentiert einen neuen Strukturtyp der ebenfalls Au³⁺ (Elektronenkonfiguration 5d⁸) in quadratischer Umgebung von O²⁻-Ionen aufweist. Au³⁺ besetzt zwei Punktlagen, die mit 2,00 Å und 2,10 Å praktisch gleich lange Abstände zu jeweils nur einer O²⁻-Punktlage aufweisen. In Abb. 1(a) wurden diese nicht planaren AuO₄-Quadrate als weiße Flächen dargestellt. Sie treten zueinander isoliert auf und sind entlang der z-Achse, im Gegensatz zu den CuO₄-Quadraten in Bi₂CuO₄ [8] bzw. den PdO₄-Quadraten in Bi₂PdO₄ [9], zentral übereinander gestapelt. Die Ursache für diese weniger dichte Packung von AuO₄-Polygonen ist in der Verknüpfung mit den Sr/O-Polyedern zu erkennen.

 Sr^{2+} , welches drei kristallographisch unterschiedliche Lagen besetzt, ist verzerrt würfelförmig von acht O²⁻-Ionen koordiniert. Die SrO₈-Polyeder sind in Abb. 1 in offener Form dargestellt. ($\mathrm{Sr}_5\mathrm{O}_8$)⁶⁻ bildet ein dreidimensionales

Abb. 1. (a) Perspektivische Darstellung der Polyederverknüpfung in $Ba_5Au_2O_8$: weiße quadratische Flächen, Polygone um Au(1) und Au(2); große Kugel mit Kreuz, Sr(1)–Sr(3); kleine offene Kugel, O^{2-} ; (b) SrO₈-Einzelpolyeder; (c) Anordnung von acht AuO₄-Polygonen an einem SrO₈-Polyeder mit Torsion der AuO₄-Ebenen.

Gerüst welches aus eindimensionalen Strängen flächenverknüpfter $m SrO_8$ -Würfel um die Lagen m Sr(2) und m Sr(3) aufgebaut werden kann. Je vier dieser $\frac{1}{\omega}[
m SrO_2]$ -Polyederketten verknüpfen über Kanten zu einer Tunnelstruktur. Ein Tunnel wird mit m Sr(1), die anderen mit Au(1) und Au(2) besetzt. Somit zeigt das Polyeder um m Sr(1) zu sich selbst keine Verknüpfung, der Kontakt zu $m Sr(2)O_8$ und $m Sr(3)O_8$ erfolgt ausschließlich über Würfelkanten. Die Besetzung der Tunnelstruktur längs [001] mit Au³⁺ jeweils auf der Höhe der Würfelflächen führt zu den erwähnten großen Abständen der AuO₄-Quadrate zueinander. In Abb. 1(b) ist ein $m SrO_8$ -Würfel getrennt gezeichnet, um die Verzerrung dieses Polyeders zu demonstrieren. Das Teilbild Abb. 1(c) zeigt die Verknüpfung von acht AuO₄-Polygonen mit den Ecken eines $m SrO_8$ -Würfels und die erhebliche Torsion der quadratischen Au³⁺-Umgebung. Die Abweichungen von der Planarität sind so groß, daß bereits ein Übergang zu einer tetraedrischen Koordination angedeutet ist.

Die Kristallchemie der Oxoaurate(III) läßt an den wenigen Beispielen bereits erkennen, daß von den hier beschriebenen isolierten AuO_4 -Quadraten über die Doppelquadrate in Li_3AuO_3 zu den isolierten Ketten in $KAuO_2$, RbAuO₂, Li_5AuO_4 ebenso eine Zunahme an Vernetzung zu beobachten ist, wie dies die weit umfangreichere Kristallchemie der Oxocuprate [10] zeigt.

Alle Rechnungen wurden auf der elektronischen Rechenanlage VAX 8550 der Universität Kiel durchgeführt und die Zeichnungen mit einem modifiziertem ORTEP-Programm [11, 12] erstellt.

Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich technische Zusammenarbeit mbH., W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-56126, des Autors und Zeitschriftenzitats angefordert werden.

Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der chemischen Industrie danken wir für die Unterstützung mit wertvollen Sachmitteln.

Literatur

- 1 H.-D. Wasel-Nielen und R. Hoppe, Z. Anorg. Allg. Chem., 375 (1970) 43.
- 2 C. Weigel und K.-J. Range, Angew. Chem., im Druck.
- 3 J. Weinreich und Hk. Müller-Buschbaum, J. Alloys Comp., im Druck.
- 4 M. Feller-Kniepmeier und Th. Heumann, Z. Metallk., 51 (1960) 404.
- 5 G. M. Sheldrick, Program for the Solution of Crystal Structures, Göttingen, 1986.
- 6 G. M. Sheldrick, Program for Crystal Structure Determination, Version 1.1.1976, Cambridge.
- 7 Programm zur empirischen (Psi-scan) Absorptionskorrektur, Firma Stoe u. Cie., Darmstadt, 1987.
- 8 R. Arpe une Hk. Müller-Buschbaum, Z. Anorg. Allg. Chem., 426 (1976) 1.
- 9 R. Arpe und Hk. Müller-Buschbaum, Z. Naturforsch., Teil B, 31 (1977) 1708.
- 10 Hk. Müller-Buschbaum, Angew. Chem., 103 (1991) 741.
- 11 C. K. Johnson, Rep. ORNL-3794, 1965 (Oak Ridge National Laboratory, TN).
- 12 K.-B. Plötz, Dissertation, Universität Kiel, 1982.